928 research outputs found

    Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization due to the dwindling number of effective therapies available to treat infections. Over the last decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologs found in other clinically-relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.This work was supported by the European Commission’s Horizon 2020 Grant 642620 to M.W. and A.P. and BBSRC Grant BB/M019411/1 to M.W

    Field Longevity of a Fluorescent Protein Marker in an Engineered Strain of the Pink Bollworm, Pectinophora gossypiella (Saunders)

    Get PDF
    The cotton pest, pink bollworm (Pectinophora gossypiella (Saunders)), is a significant pest in most cotton-growing areas around the world. In southwestern USA and northern Mexico, pink bollworm is the target of the sterile insect technique (SIT), which relies on the mass-release of sterile pink bollworm adults to over-flood the wild population and thereby reduce it over time. Sterile moths reared for release are currently marked with a dye provided in their larval diet. There are concerns, however, that this marker fails from time to time, leading to sterile moths being misidentified in monitoring traps as wild moths. This can lead to expensive reactionary releases of sterile moths. We have developed a genetically marked strain that is engineered to express a fluorescent protein, DsRed2, which is easily screened under a specialised microscope. In order to test this marker under field conditions, we placed wild-type and genetically marked moths on traps and placed them in field cages. The moths were then screened, in a double-blind fashion, for DsRed2 fluorescence at regular intervals to determine marker reliability over time. The marker was shown to be robust in very high temperatures and generally proved reliable for a week or longer. More importantly, genotyping of moths on traps by PCR screening of the moths was 100% correct. Our findings indicate that this strain - and fluorescent protein markers in general - could make a valuable contribution to SIT

    Hydrophilic and lipophilic radiopharmaceuticals as tracers in pharmaceutical development: In vitro – In vivo studies

    Get PDF
    BACKGROUND: Scintigraphic studies have been performed to assess the release, both in vitro and in vivo, of radiotracers from tablet formulations. Four different tracers with differing physicochemical characteristics have been evaluated to assess their suitability as models for drug delivery. METHODS: In-vitro disintegration and dissolution studies have been performed at pH 1, 4 and 7. In-vivo studies have been performed by scintigraphic imaging in healthy volunteers. Two hydrophilic tracers, ((99m)Tc-DTPA) and ((99m)Tc-MDP), and two lipophilic tracers, ((99m)Tc-ECD) and ((99m)Tc-MIBI), were used as drug models. RESULTS: Dissolution and disintegration profiles, differed depending on the drug model chosen. In vitro dissolution velocity constants indicated a probable retention of the radiotracer in the formulation. In vivo disintegration velocity constants showed important variability for each radiopharmaceutical. Pearson statistical test showed no correlation between in vitro drug release, and in vivo behaviour, for (99m)Tc-DTPA, (99m)Tc-ECD and (99m)Tc-MIBI. High correlation coefficients were found for (99m)Tc-MDP not only for in vitro dissolution and disintegration studies but also for in vivo scintigraphic studies. CONCLUSION: Scintigraphic studies have made a significant contribution to the development of drug delivery systems. It is essential, however, to choose the appropriate radiotracers as models of drug behaviour. This study has demonstrated significant differences in release patterns, depending on the model chosen. It is likely that each formulation would require the development of a specific model, rather than being able to use a generic drug model on the basis of its physicochemical characteristics

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Associations Between Methylation of Paternally Expressed Gene 3 (PEG3), Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer.

    Get PDF
    Cytology-based screening for invasive cervical cancer (ICC) lacks sensitivity and specificity to discriminate between cervical intraepithelial neoplasia (CIN) likely to persist or progress from cases likely to resolve. Genome-wide approaches have been used to identify DNA methylation marks associated with CIN persistence or progression. However, associations between DNA methylation marks and CIN or ICC remain weak and inconsistent. Between 2008-2009, we conducted a hospital-based, case-control study among 213 Tanzania women with CIN 1/2/3 or ICC. We collected questionnaire data, biopsies, peripheral blood, cervical scrapes, Human papillomavirus (HPV) and HIV-1 infection status. We assessed PEG3 methylation status by bisulfite pyrosequencing. Multinomial logistic regression was used to estimate odds ratios (OR) and confidence intervals (CI 95%) for associations between PEG3 methylation status and CIN or ICC. After adjusting for age, gravidity, hormonal contraceptive use and HPV infection, a 5% increase in PEG3 DNA methylation was associated with increased risk for ICC (OR = 1.6; 95% CI 1.2-2.1). HPV infection was associated with a higher risk of CIN1-3 (OR = 15.7; 95% CI 5.7-48.6) and ICC (OR = 29.5, 95% CI 6.3-38.4). Infection with high risk HPV was correlated with mean PEG3 differentially methylated regions (DMRs) methylation (r = 0.34 p<0.0001), while the correlation with low risk HPV infection was weaker (r = 0.16 p = 0.047). Although small sample size limits inference, these data support that PEG3 methylation status has potential as a molecular target for inclusion in CIN screening to improve prediction of progression. Impact statement: We present the first evidence that aberrant methylation of the PEG3 DMR is an important co-factor in the development of Invasive cervical carcinoma (ICC), especially among women infected with high risk HPV. Our results show that a five percent increase in DNA methylation of PEG3 is associated with a 1.6-fold increase ICC risk. Suggesting PEG3 methylation status may be useful as a molecular marker for CIN screening to improve prediction of cases likely to progress

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children: Why, What, and How to Undertake Estimates?

    Get PDF
    Improving maternal, newborn, and child health is central to Sustainable Development Goal targets for 2030, requiring acceleration especially to prevent 5.6 million deaths around the time of birth. Infections contribute to this burden, but etiological data are limited. Group B Streptococcus (GBS) is an important perinatal pathogen, although previously focus has been primarily on liveborn children, especially early-onset disease. In this first of an 11-article supplement, we discuss the following: (1) Why estimate the worldwide burden of GBS disease? (2) What outcomes of GBS in pregnancy should be included? (3) What data and epidemiological parameters are required? (4) What methods and models can be used to transparently estimate this burden of GBS? (5) What are the challenges with available data? and (6) How can estimates address data gaps to better inform GBS interventions including maternal immunization? We review all available GBS data worldwide, including maternal GBS colonization, risk of neonatal disease (with/without intrapartum antibiotic prophylaxis), maternal GBS disease, neonatal/infant GBS disease, and subsequent impairment, plus GBS-associated stillbirth, preterm birth, and neonatal encephalopathy. We summarize our methods for searches, meta-analyses, and modeling including a compartmental model. Our approach is consistent with the World Health Organization (WHO) Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER), published in The Lancet and the Public Library of Science (PLoS). We aim to address priority epidemiological gaps highlighted by WHO to inform potential maternal vaccination

    Threat of an influenza pandemic: family physicians in the front line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chance of an influenza pandemic is real and clinicians should keep themselves informed about the rationale and science behind preventive and therapeutic principles relating to an (impending) influenza pandemic.</p> <p>Discussion</p> <p>Vaccination is considered the best prevention in case of a pandemic threat and first choice to contain the impact of a pandemic. Pending the availability of an effective pandemic vaccine, antivirals are likely the only effective agents for prevention and treatment. When an influenza pandemic is impending, all interventions aim to prevent people becoming infected and to suppress replication and transmission of the virus as much as possible. Antivirals will be prescribed to patients with laboratory confirmed pre-pandemic influenza as well as to their contacts (post-exposure prophylaxis) which may delay development of or even prevent a pandemic. During a manifest influenza pandemic, however, there is large-scale spreading of the influenza virus. Therefore, preventive use of antivirals is less efficient to prevent transmission. Delaying the pandemic is then important in order to prevent exhausting public health resources and disruption of society. Thus, during a manifest pandemic everyone with influenza symptoms should receive antivirals as quickly as possible, regardless of virological confirmation. To ensure optimal effectiveness of antivirals and to minimize development of drug resistant viral strains, the use of antivirals for annual influenza should be restrictive. The crucial position of family physicians during an (impending) influenza pandemic necessitates the development of primary health care guidelines on this topic for all countries.</p> <p>Summary</p> <p>Family physicians will play a key role in assessing and treating victims of a new influenza virus, and in reassuring the worried well. We outline various possible interventions in the event of an impending and a manifest influenza pandemic, such as non-medial measures, prescription of antivirals, and vaccination, and emphasize the need for pandemic influenza preparedness.</p
    • …
    corecore